Chapter 2 Section 1 Question 4
Question
Consider rolling a fair six-sided die, so that $S=\{1,2,3,4,5,6\}$. Let $X(s)=s$, and $Y(s)=s^3+2$. Let $Z=XY$. Compute $Z(s)$ for all $s\in S$.
Answer
Author: Mohammad-Ali Bandzar| Date:Oct 13 2020
$$Z(1)=X(1)\times Y(1)$$ $$Z(1)=1\times (1^3+2)$$ $$Z(1)=3$$ $$Z(2)=X(2)\times Y(2)$$ $$Z(2)=2\times (2^3+2)$$ $$Z(2)=20$$ $$Z(3)=X(3)\times Y(3)$$ $$Z(3)=3\times (3^3+2)$$ $$Z(3)=87$$ $$Z(4)=X(4)\times Y(4)$$ $$Z(4)=4\times (4^3+2)$$ $$Z(4)=264$$ $$Z(5)=X(5)\times Y(5)$$ $$Z(5)=5\times (5^3+2)$$ $$Z(5)=635$$ $$Z(6)=X(6)\times Y(6)$$ $$Z(6)=6\times (6^3+2)$$ $$Z(6)=1308$$